

CARBON CREDITS: CATALYZING CO-EVOLUTION WITH LIVING SYSTEMS

CLIMATE RISK & RESILIENCE | BLOCKCHAIN & CLIMATE TECH

The global dialogue on carbon credits has too narrowly framed them as mere offsetting mechanisms, overlooking their potential as catalysts for planetary health. This article reframes carbon credits as instruments for co-evolution, supporting reciprocal adaptation of human and natural systems. We explore this through three dimensions: redefining value beyond carbon, addressing market failures, and leveraging blockchain for regenerative systems. By shifting from a transactional to a regenerative perspective, we can unlock their capacity to drive both climate and social progress. Achieving this requires valuing the diverse cobenefits of carbon projects and correcting the market failures that currently undervalue nature. Blockchain technology offers a robust infrastructure for this new paradigm, enabling transparent, efficient, and inclusive carbon markets that align economic incentives with ecological and social regeneration.

Introduction

The global conversation on carbon credits has been constrained by a narrow perspective that severely limits their transformative potential. Too often, these instruments are treated as simple accounting tools for offsetting emissions. This reductionist view fails to recognize that carbon credits should be positioned within broader planetary health strategies, functioning as integral components of systems designed to restore ecological wellness. Like healthcare, carbon credits should prioritize systemic planetary health over symptom-level offsets.

This article reimagines carbon credits as catalysts for co-evolution, using blockchain technology to verify and support practices like community-led reforestation and Indigenous stewardship, thereby aligning human and ecological systems. By moving beyond narrow criteria for project selection toward regenerative partnerships rooted in the ecological and cultural realities of each location, carbon markets can better drive social and climate progress. This means working not only in place but with place, treating it as a living system capable of evolution.

The current framing of carbon credits is plagued by mistrust in accounting, unequal distribution of benefits, and insufficient impact on emissions. This systemic dysfunction demands fundamental rethinking, not minor adjustments. Our proposed shift represents more than idealism; it provides a practical framework for addressing the interconnected social, economic, and ecological aspects of value creation. We also argue that blockchain can serve as a key enabler of this transformation. Harnessing this technology allows us to build transparent, efficient, and inclusive carbon markets that align economic incentives with both social equity and ecological regeneration.

1. Beyond Transactions: The Garden vs. Factory Paradigm

Traditional approaches reduce carbon credits to compliance-driven instruments focused primarily on efficiency metrics, neglecting the complex relationships and interactions that sustain ecosystems. This efficiency-first paradigm simplifies living systems into narrow measurements and fails to capture the rich interconnections that make life on Earth resilient. In contrast, the broader potential of carbon credits invites us to view carbon management more like tending a garden. A garden nurtures diverse, interconnected life. It creates value beyond just carbon storage. Most carbon projects work like factories instead. They focus on single goals. They take without giving back. They ignore local needs.

When we adopt the garden paradigm, we acknowledge that every intervention creates ripple effects throughout the ecosystem. A reforestation project doesn't only sequester carbon; it also restores habitats, protects soil, stabilizes water cycles, and supports biodiversity. Similarly, regenerative agriculture does more than just capture carbon in soils; it enhances food system sustainability, boosts biodiversity, and strengthens rural communities. This shift begins with awareness of the political, social, economic, and environmental specificities of a project's location. In regenerative practice, this is known as "partnering with place"—an approach that respects the living nature and potential of each location. The garden paradigm emphasizes that living systems are complex, interconnected, and inherently regenerative when properly supported.

Moving from factory to garden thinking transforms how we evaluate carbon projects. Blockchain technology enables this shift by tracking not just carbon, but all the living system benefits—biodiversity, water health, and community well-being. Instead of focusing only on cost per ton, we can now value the full potential of regenerative work. This aligns with Regenesis' vision of developing value-generating capacity in nested systems. The best projects cooperate with nature's intelligence, creating place-based vitality that standardized metrics miss. Blockchain makes this complexity visible, helping move beyond factory-style efficiency to true regeneration.

2. Co-Evolution: The Coral Reef of Carbon Markets

To fully appreciate the potential of carbon credits, we must understand the concept of co-evolution. Traditionally defined as the mutual adaptation of interdependent species (Ehrlich and Raven 1964), co-evolution in regenerative development goes further: it describes the ongoing, reciprocal evolution of human and natural systems, where both are transformed through their relationship. Rather than focusing on mere survival, it is about activating the latent potential of communities, ecosystems, and economies to evolve together in richer, more resilient ways.

Carbon credit initiatives need to be structured to foster beneficial interactions between human activity and ecosystems. By harmonizing with natural processes, these initiatives can yield multifaceted advantages that extend beyond carbon mitigation: bolstering climate resilience, safeguarding biodiversity, rehabilitating water and soil systems, and improving community welfare. Coral reefs exemplify this symbiotic approach: coral polyps and algae co-create ecosystems that support thousands of species. Like these reefs, carbon markets that foster symbiosis between communities, ecosystems, and economies can achieve far greater resilience than extractive models. As evolutionary biologist Elisabet Sahtouris observes, the most competitive and extractive species tend to be the least evolutionarily mature while more evolved species often develop symbiotic relationships that enhance mutual resilience and ecosystem health.

Our planet functions like a vast neural network, where each node (ecosystem) connects to countless others. Carbon credits can strengthen these connections, like peatland restoration, which regulates water, stores carbon, and protects biodiversity, thereby enhancing resilience across the entire system. This mirrors how learning strengthens neural pathways in the brain. When investing in carbon projects, we're not just offsetting emissions but fostering co-evolution between human and natural systems, building greater harmony and resilience.

Regenerative development also suggests that truly reciprocal relationships emerge when local stakeholders are empowered not only as beneficiaries but also as co-creators and producers of value. Rather than delivering predesigned solutions for communities to passively receive, project developers should engage local actors in ways that activate their capacity to contribute. This shift deepens shared ownership, enhances adaptability, and produces more resilient, place-based outcomes.

This co-evolutionary perspective reorients carbon credits to reflect compensation that captures the complexity, diversity, and creativity of local territories. It demands new validation frameworks that measure systemic health, not just carbon math, and investment models that reward regenerative outcomes. Instead of merely doing less harm, we begin actively contributing to the health and vitality of living systems. This shift aligns human economic activity with the evolutionary trajectory of life on Earth, positioning us as partners rather than antagonists in the story of planetary development.

3. The Investment Portfolio: Diversified Returns from Carbon Projects

A wise investor diversifies their portfolio to maximize returns while managing risk. Similarly, well-designed carbon credit projects deliver multiple returns that extend far beyond carbon reductions or sequestration (Trellis 2023). These co-benefits, ranging from storm protection to biodiversity, are now measurable via satellite monitoring, ecological surveys, and community impact assessments. Consider a mangrove restoration project: beyond capturing carbon, it provides coastal protection from storms (saving billions in potential damage), creates nursery habitat for fisheries (supporting food security and livelihoods), filters water pollution, and preserves biodiversity (CFP Energy 2024). This diversified return profile makes such projects far more valuable than their carbon sequestration capacity alone would suggest.

Carbon projects can also be understood through the lens of watershed management. Upstream activities (initial project investment) generate multiple downstream benefits (improved soil health, water quality, biodiversity) that extend far beyond the original intervention point (Carbon Direct 2025). Small farms that mix trees with crops do three things: store carbon, raise farmers' incomes, and improve soil health. This watershed analogy illustrates why the most effective carbon projects target key leverage points in ecosystems: even small investments can generate disproportionately large positive impacts throughout the system.

The diversified returns from thoughtfully designed carbon projects create a compelling economic case that goes beyond regulatory compliance or corporate social responsibility. Emerging verification tools like blockchain can now quantify and transparently distribute these multidimensional benefits. Organizations that recognize this broader value proposition gain competitive advantages through risk reduction, stakeholder engagement, innovation opportunities, and market differentiation. As markets evolve to better recognize and reward these multiple forms of value creation, early adopters of this more sophisticated approach will be well-positioned to thrive.

4. The Value Transformation: From Externality to Asset

Environmental damage is often excluded from market prices (International Monetary Fund 2025). Traditional economics refers to these overlooked costs, such as deforestation, increasing flood risks, and industrial water pollution harming fisheries, as "externalities" because they remain outside standard business calculations despite their real societal impacts. Carbon credits help transform these externalities into measurable, tradable assets, creating economic visibility for previously unvalued natural processes. This transformation brings environmental value into the economic equation, allowing markets to begin recognizing and rewarding activities that enhance natural capital.

This shift enables a multi-capital valuation approach that integrates financial, natural, social, and human capital. Carbon credits create bridges between different capital domains. For instance, a regenerative agriculture project could simultaneously generate local jobs (social capital) and improve soil quality (natural capital). As markets evolve to recognize these multiple forms of capital, organizations that excel at generating integrated value across all capitals gain significant competitive advantages.

Carbon credits also function as risk-mitigation instruments in a world where climate risk increasingly translates to financial risk. Organizations face regulatory risks (carbon taxes, emissions caps), physical risks (extreme weather, resource scarcity), transition risks (technology shifts, market changes), and liability risks (litigation, reputation damage). For example, Microsoft purchases carbon credits from afforestation projects as part of its climate risk strategy, hedging against both regulatory costs and supply chain disruptions. High-quality credits help manage these risks, and as risk assessment becomes more sophisticated, credits with verified co-benefits command premium prices. This creates economic incentives for superior environmental performance.

5. Market Evolution: From Compliance to Transformation

Carbon markets are evolving through distinct maturation stages.

Stage 1: Compliance-driven

- Organizations meet regulatory minimums at the lowest cost
- Example: Purchasing basic offsets to comply with carbon taxes

Stage 2: Voluntary leadership

- Forward-thinking companies gain a competitive advantage
- Example: Tech firms investing in high-quality forestry projects

Stage 3: Systemic transformation

- Regenerative practices become market norm
- Example: Coastal blue carbon projects that sequester CO₂ while
- restoring marine ecosystems and supporting fishing communities

Current carbon pricing inadequately reflects true environmental costs and benefits (Stern and Stiglitz 2021). Carbon markets are maturing alongside the rapid growth of ESG investing and sustainable finance. This evolution enables more sophisticated valuation of co-benefits, with premium prices for high-quality credits that deliver verified ecosystem services beyond just carbon reduction. This price-discovery mechanism creates economic incentives for project developers to maximize ecological value rather than simply minimizing costs.

Effective carbon strategies also align stakeholder interests across previously divergent groups. Shareholders benefit from long-term value creation and risk reduction. Customers respond to authentic environmental action and transparency. Communities gain from local economic development and ecosystem restoration, as demonstrated by Nepal's community forestry program. There, local management of carbon projects boosted both livelihoods and tree cover, unlike failed top-down offset schemes in other regions. This alignment reduces conflict and enhances the social license to operate, creating business value beyond direct carbon reduction or removal.

6. Blockchain: The Technological Enabler

While the conceptual shift toward regenerative carbon markets is powerful, blockchain technology provides the practical infrastructure to make this vision real. Traditional carbon credits suffer from verification challenges and double-counting risks that undermine market confidence (KPMG 2025). Double-counting occurs when multiple parties claim the same emission reduction, which inflates climate progress claims and weakens market credibility. Blockchain creates an immutable record of credit creation, transfer, and retirement. Like DNA sequencing that uniquely identifies and traces lineage, blockchain produces an unalterable fingerprint for each carbon credit. This foundation reduces verification costs and strengthens trust in the market.

Smart contracts automate verification, issuance, and settlement processes that once required manual intervention. Similar to how automated traffic lights replaced manual traffic directors, smart contracts create self-executing rules that eliminate intermediaries and reduce transaction costs. Pilot projects like Toucan Protocol's blockchain-based carbon registry demonstrate this in practice, automatically retiring credits when used for offsets. This automation enables micro-transactions and broader participation, allowing smaller projects and buyers to access markets that were previously out of reach.

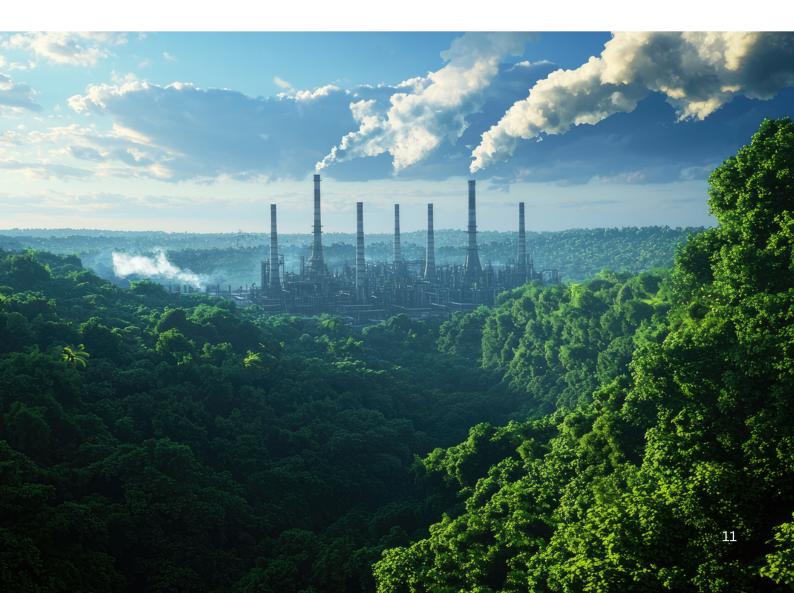
Tokenization creates divisible, programmable digital representations of environmental assets that were once difficult to trade efficiently. Just as digitizing music transformed distribution from physical albums to streaming individual songs, tokenization enables fractional ownership and fluid trading of environmental assets. Fractional ownership helps small participants access the market, but it also brings risks. Speculators may trade carbon tokens like crypto assets, which can separate prices from real ecological value. Volatility may harm project developers and buyers. Safeguards can prevent these problems. Some strategies that could help minimize these risks are holding-period requirements, tiered participation rules, and real-time benefit tracking.

7. Regenerative Governance Through Blockchain

Traditional governance structures often struggle with managing global commons, creating challenges for carbon markets that span jurisdictions and stakeholders (Ostrom et al. 1999). Decentralized autonomous organizations (DAOs) offer a potential solution by enabling inclusive governance that involves local communities, investors, and implementers directly. DAOs use transparent voting to prevent any single group from dominating. Tools like quadratic voting limit large investors, while community veto rights protect local stakeholders.. These innovations align incentives across diverse groups and create more resilient systems that can adapt to changing conditions while maintaining accountability.

Benefits from carbon projects often fail to reach local communities, undermining long-term sustainability and social license to operate. Smart contracts can guarantee transparent benefit-sharing by automatically executing predetermined distribution formulas based on measurable outcomes. For example, automatically directing 30 percent of a forest project's revenue to a community-managed fund when satellite data confirms tree growth targets are met. This ensures that communities receive their agreed-upon share of revenues without relying on intermediaries or subjective evaluation, reducing conflict and strengthening community support.

Fragmented carbon markets and standards create inefficiencies and limit the scale needed to meet global climate targets. Blockchain interoperability—as seen in the Coalition to Grow Carbon Markets (led by Kenya, Singapore, and the UK) and Article 6 of the Paris Agreement—can bridge these divides. These initiatives are building shared principles for credit integrity and cross-border registry systems, enabling seamless transactions, eliminating duplicate verification, and laying the groundwork for a scalable global market with inherent traceability.



8. The Path Forward

We have a chance to completely rethink carbon credits. They should not be seen as accounting tools but as living partnerships with nature. Imagine credits that can actually help heal ecosystems while meeting our climate promises under the Paris Agreement. Instead of simple carbon math, we could create markets that do it all: cut emissions, restore damaged lands, support local communities, and build real economic value that lasts.

Making this happen requires all hands on deck. Businesses should track what really counts—not just dollars but clean water and happy communities. Politicians need to make rules that help nature heal, not just pollute less. Money people have to stop chasing quick bucks and invest in our future. And the rest of us? We've got to keep pushing for a fair system that works for everyone—not just the big players.

Authors:

Océane Desvigne

Océane Desvigne is a Fellow in Blockchain & Digital Assets at The Digital Economist and the founder of Asha Horizon, a boutique carbon credit brokerage specializing in carbon dioxide removals with a focus on biochar. She holds a bachelor of business administration in finance from Concordia University and brings experience across carbon markets, sustainability, and impact finance. Having lived in Europe, Asia, and North America, she combines a global outlook with a deep appreciation for local contexts in climate action and finance, working with corporates, project developers, and investors to build integrity-driven carbon markets that create lasting value.

Dr. Nikhil Varma

Dr. Nikhil Varma is Non-Executive Chair and Senior Fellow in Blockchain & Digital Assets at The Digital Economist, and an Associate Professor of Management at Ramapo College of New Jersey. With over 20 years of academic and industry experience, his expertise spans operations and supply chain management, blockchain, data analytics, artificial intelligence, and sustainability. He has worked with blockchain startups to design decentralized business models, served as technical lead at the Algorand Foundation to expand blockchain adoption in India, and held visiting professorships at institutions such as IIT Delhi and Molde University, Norway. His forthcoming book, *Blockchain Capitalism*, explores how blockchain can reshape capitalism into a more inclusive, accountable, and sustainable model for the twenty-first century.

References

- 1. Carbon Direct. 2025. Soil Carbon. 2025 Criteria for High-Quality Carbon Dioxide Removal. Retrieved from https://www.carbon-direct.com/criteria/2025-edition/soil-carbon.
- CFP Energy. 2024. "The Crucial Role of Carbon Finance Projects in Restoring Mangrove Forest Ecosystems." Retrieved from https://www.cfp.energy/en/insight/the-crucial-role-of-carbon-finance-projects-in-restoring-mangrove-forest-ecosystems.
- 3. Ehrlich, P. R., and Raven, P. H. 1964. "Butterflies and Plants: A Study in Coevolution." *Evolution* 18 (4): 586–608.
- 4. International Monetary Fund. 2025. "Externalities: Prices Do Not Capture All Costs." Retrieved from https://www.imf.org/external/pubs/ft/fandd/basics/38-externalities.htm.
- 5. KPMG. 2025. "Integrity Issues in the Voluntary Carbon Markets." Retrieved from https://kpmg.com/xx/en/our-insights/esg/integrity-issues-in-the-voluntary-carbon-markets.html.
- 6. Ostrom, E., Burger, J., Field, C. B., Norgaard, R. B., and Policansky, D. 1999. "Revisiting the Commons: Local Lessons, Global Challenges." *Science* 284 (5412): 278–282.
- 7. Stern, N., and Stiglitz, J. E. 2021. "The Social Cost of Carbon, Risk, Distribution, Market Failures: An Alternative Approach." (NBER Working Paper No. 28472). National Bureau of Economic Research.
- 8. Trellis. 2023. "Why Measuring Biodiversity Co-Benefits in Carbon Credits Matters." Retrieved from https://trellis.net/article/why-measuring-biodiversity-co-benefits-carbon-credits-matters/.

The Digital Economist, headquartered in Washington, D.C. with offices at One World Trade Center in New York City, is the world's foremost think tank on innovation advancing a human-centered global economy through technology, policy, and systems change. We are an ecosystem of 40,000+ executives and senior leaders dedicated to creating the future we want to see—where digital technologies serve humanity and life.

We work closely with governments and multi-stakeholder organizations to change the game: how we create and measure value. With a clear focus on high-impact projects, we serve as partners of key global players in co-building the future through scientific research, strategic advisory, and venture build out.

We engage a global network to drive transformation across climate, finance, governance, and global development. Our practice areas include applied Al, sustainability, blockchain and digital assets, policy, governance, and healthcare. Publishing 75+ in-depth research papers annually, we operate at the intersection of emerging technologies, policy, and economic systems—supported by an up-and-coming venture studio focused on applying scientific research to today's most pressing socio-economic challenges.